Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*E*)-(1,10-Phenanthrolin-5-yl)iminomethyl]phenol methanol monosolvate

Sema Öztürk Yíldírím,^{a,b} Nebahat Demirhan,^c Fikriye Elmalí^c and Ray J. Butcher^d*

^aInorganic Chemistry Department, Howard University, Washington, DC 20059, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cYíldíz Technical University, Faculty of Arts and Sciences, Chemistry Department, 34210 Esenler, Istanbul, Turkey, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 12 March 2012; accepted 19 March 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 8.6.

In the title multi-donor Schiff base compound, $C_{19}H_{13}N_3O$ -CH₃OH, the dihedral angle between the mean planes of the phenanthroline and phenol rings is 59.3 (1)°. The Schiff base molecule is linked to the solvent molecule by an $O-H\cdots O$ hydrogen bond. In the crystal, the components are linked by $O-H\cdots N$ hydrogen bonds, weak $O-H\cdots N$ interactions and $\pi-\pi$ stacking interactions [centroid–centroid distances = 3.701 (1) and 3.656 (1) Å].

Related literature

For the role played by 1,10-phenanthroline and its derivatives as molecular scaffolds for supramolecular assemblies, see: Balzani *et al.* (1996). For the metal-chelating properties of the 1,10-phenanthroline ligand, see: Sammes & Yahioglu (1994). For the photochemical and redox properties of phenanthroline rings, see: Camren *et al.* (1996); Bolger *et al.* (1996); Msood & Hodgson (1993). For Schiff bases as oxygen-carriers and as photochromic or thermochromic materials, see: Hobday & Smith (1973); Gul *et al.* (1986); Can & Bekaroglu (1988); Avciata *et al.* (1995, 1998); Demirhan *et al.* (2002). For the synthesis of 5-amino-1,10-phenanthroline, see: Gillard & Hill (1974). For related structures, see: Wu *et al.* (2011); Fun *et al.* (2010). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

C₁₉H₁₃N₃O·CH₄O $M_r = 331.37$ Monoclinic, *Pc* a = 11.9398 (12) Å b = 4.6680 (5) Å c = 14.7818 (18) Å $\beta = 101.961$ (11)°

Data collection

Oxford Diffraction Gemini-R diffractometer Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007), using a multifaceted crystal model (Clark &

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.110$ S = 1.041960 reflections 229 parameters T = 123 K1.15 × 0.84 × 0.06 mm

 $V = 805.98 (16) \text{ Å}^3$

Cu Ka radiation

 $\mu = 0.73 \text{ mm}^{-1}$

Z = 2

Reid, 1995)] $T_{\min} = 0.505$, $T_{\max} = 0.954$ 3176 measured reflections 1960 independent reflections 1885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

 $\begin{array}{l} \text{2 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.24 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.17 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} D1 - H1 \cdots O1S \\ D1S - H1S \cdots N1^{i} \\ D1S - H1S \cdots N2^{i} \end{array}$	0.84	1.81	2.640 (3)	172
	0.84	2.01	2.829 (3)	163
	0.84	2.68	3.242 (3)	126

Symmetry code: (i) x + 1, y + 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2127).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Avciata, U., Bozdogan, A. E., Kocak, M., Gul, A. & Bekaroglu, O. (1995). J. Coord. Chem. 35, 319–323.
- Avciata, U., Demirhan, N. & Gül, A. (1998). Monatsh. Chem. 29, 9-18.
- Balzani, V., Juris, A., Campagna, S. & Serroni, S. (1996). Chem. Rev. pp. 759-833.
- Bolger, J., Gourdon, A., Ishow, E. & Launay, J. P. (1996). Inorg. Chem. 35, 2937–2944.
- Camren, H., Chang, M. Y., Zeng, L. & Mc Guire, M. E. (1996). Synth. Commun. 26, 1247–1252.

Can, S. & Bekaroglu, O. (1988). J. Chem. Soc. Dalton Trans. pp. 2831–2835. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A**51**, 887–897.

- Demirhan, N., Erden, I. & Avciata, U. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 1567–1577.
- Fun, H.-K., Loh, W.-S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, 01320.
- Gillard, R. D. & Hill, R. E. E. (1974). J. Chem. Soc. Dalton Trans. pp. 1217–1236.
- Gul, A., Okur, A. I., Cihan, A., Tan, N. & Bekaroglu, O. (1986). Synth. React. Inorg. Met. Org. Chem. 16, 871–884.
- Hobday, M. D. & Smith, T. S. (1973). Coord. Chem. Rev. 9, 311-337.
- Msood, A. & Hodgson, D. J. (1993). Inorg. Chem. 32, 4839-4844.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-336.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, X.-Y., Xu, X.-J. & Wang, X.-C. (2011). Acta Cryst. E67, 0474.

supplementary materials

Acta Cryst. (2012). E68, 01173–01174 [doi:10.1107/S1600536812011890]

2-[(E)-(1,10-Phenanthrolin-5-yl)iminomethyl]phenol methanol monosolvate

Sema Öztürk Yíldírím, Nebahat Demirhan, Fikriye Elmalí and Ray J. Butcher

Comment

1,10-Phenanthroline and its derivatives play important roles as molecular scaffolding for supramolecular assemblies (Balzani *et al.*, 1996). These have played a major role in the development of polypyridyl metal complexes. The metal chelating property of the 1,10-phenanthroline ligand and its derivatives have been utilized in a range of analytical reagents as well as for the development of bioinorganic probes (Sammes & Yahioglu, 1994). The photochemical and redox properties of complexes can be varied systematically through appropriate substitution on the phenanthroline rings (Camren *et al.*, 1996: Bolger *et al.*, 1996: Msood & Hodgson, 1993).

The coordination chemistry of Schiff bases derived from salicylaldehyde has been the subject of many studies because of their interesting properties; *e.g.* as oxygen-carriers to mimic some complicated biological systems, as photochromic or thermochromic materials (Hobday & Smith, 1973: Gul *et al.*, 1986: Can & Bekaroglu, 1988: Avciata *et al.* 1995; Avciata *et al.* 1998; Demirhan *et al.* 2002).

We report here the synthesis and characterization a new multidonor Schiff base derivative, (I), carrying N_3O donor atoms and prepared from the condensation reaction of 5-amino-1,10-phenanthroline with salicylaldehyde.

The title molecule $C_{19}H_{13}N_3O.CH_3OH$, crystallized as a methanol monosolvate (Fig. 1). All bond lengths are as expected (Allen *et al.*, 1987) and are comparable to those observed in related structures (Wu *et al.*, 2011; Fun *et al.*, 2010). The molecule is not planar, forming a dihedral angle of 59.3 (1)° between the mean planes of the phenanthroline (N1/N2/C1 –C12) and phenol (C14–C19) rings.

In the crystal, O—H···N hydrogen bonds and weak O—H···N intermolecular interactions are observed (Table 1) as well as weak π - π stacking interactions [Cg1···Cg2 (x, 1+y, z) = 3.701 (1) Å and Cg1···Cg3 (x, 1+y,z) = 3.656 (1) Å, where Cg1(N1/C1—C4/C12), Cg2(N2/C7—C11) and Cg3(C4—C7/C11—C12) are the centroids of the phenonthroline ring], (Fig. 2).

Experimental

5-Amino-1,10-phenanthroline (Gillard & Hill, 1974) (1.5 g, 7.69 mmol) in 50 ml absolute methanol was added to salicylaldehyde (0.93 g, 7.69 mmol) dissolved in 20 ml diethylether and 100 ml absolute ethanol. After refluxing this mixture for 4.5 h, the precipitate was filtered off and then washed with water and ether. The product was obtained as a yellow precipitate (70° yield). It was soluble in methanol, ethanol and chloroform. Yield 1.79 g (78%). m.p. 451–453 K; Anal. Calcd. for $C_{19}H_{13}N_3O.CH_3OH$ (299.32 g/mol) C, 74.24; H, 4.38; N, 14.04. Found: C, 74.86; H, 4.12; N, 14.66.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.84 Å, C—H = 0.95–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5 U_{eq}(CH_3 \text{ and } O)$.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.

Figure 2

The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.

2-[(E)-(1,10-Phenanthrolin-5-yl)iminomethyl]phenol methanol monosolvate

Crystal data

$C_{19}H_{13}N_3O\cdot CH_4O$	F(000) = 348
$M_r = 331.37$	$D_{\rm x} = 1.365 {\rm Mg} {\rm m}^{-3}$
Monoclinic, <i>Pc</i>	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P -2yc	Cell parameters from 1347 reflections
a = 11.9398 (12) Å	$\theta = 3.1 - 75.2^{\circ}$
b = 4.6680 (5) Å	$\mu = 0.73 \text{ mm}^{-1}$
c = 14.7818 (18) Å	T = 123 K
$\beta = 101.961 (11)^{\circ}$	Triangular plate, yellow
V = 805.98 (16) Å ³	$1.15 \times 0.84 \times 0.06 \text{ mm}$
Z = 2	
Data collection	
Oxford Diffraction Gemini-R	Graphite monochromator
diffractometer	Detector resolution: 10.5081 pixels mm ⁻¹
Radiation source: Enhance (Cu) X-ray Source	() scans

Absorption correction: analytical [<i>CrysAlis RED</i> (Oxford Diffraction, 2007), using a multi-faceted crystal model (Clark & Reid, 1995)] $T_{min} = 0.505$, $T_{max} = 0.954$ 3176 measured reflections 1960 independent reflections	1885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 75.2^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -13 \rightarrow 14$ $k = -5 \rightarrow 5$ $l = -18 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.110$ S = 1.04	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 0.0897P]$ where $P = (F_o^2 + 2F_c^2)/3$
1960 reflections229 parameters2 restraintsPrimary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack, H. D. (1983). <i>Acta</i> <i>Cryst.</i> A 39 , 876–881, 303 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -1.5 (18)

Special details

Experimental. The crystal was very fragile. On cutting the crystal shattered so an incident collimator of 1.0 mm was used.

IR (KBr): 3435(Ar—OH), 3020(Ar), 1616 (C=N—C). ¹³ C NMR, 167 (C—OH), 165 (C=C—N), 150,152 and 148 (C=N) p.p.m.. LC—MS, m/z (%): 298 (*M*-1). In the electronic spectrum two band appears at 281 and 340 nm which can be assigned to the π - π * and n- π * transition of C=C and C=N group.

The FTIR spectra were obtained on a Perkin Elmer Spectrum One Bv 5.0 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Varian UNITY INOVA 500 MHz s pectrometer. Mass spectra were measured on a FinniganTM LCQTM Advantage MAX spectrometer. Electronic spectra were obtained on a Agilent 8453 UV-Vis. Spectroscopy System. Elemental analyses were obtained on a Thermo Finnigan Flash EA 112. All other chemicals employed were of the highest grade available.

Absorption correction: CrysAlis RED, (Oxford Diffraction, 2007) Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.98484 (16)	1.4695 (5)	0.63127 (14)	0.0337 (4)
H1	1.0514	1.5260	0.6545	0.051*
O1S	1.18635 (15)	1.6610 (4)	0.71862 (14)	0.0307 (4)
H1S	1.2497	1.6321	0.7038	0.046*
N1	0.41348 (18)	0.5215 (5)	0.70687 (15)	0.0254 (4)
N2	0.32594 (18)	0.8980 (5)	0.56783 (15)	0.0268 (4)
N3	0.70428 (17)	1.0456 (5)	0.50248 (15)	0.0256 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C1	0.4567 (2)	0.3337 (6)	0.77219 (17)	0.0275 (5)
H1A	0.4061	0.2468	0.8058	0.033*
C2	0.5729 (2)	0.2556 (6)	0.79469 (18)	0.0291 (5)
H2A	0.5997	0.1206	0.8424	0.035*
C3	0.6463 (2)	0.3780 (5)	0.74647 (18)	0.0265 (5)
H3A	0.7252	0.3282	0.7600	0.032*
C4	0.60430 (19)	0.5796 (5)	0.67619 (16)	0.0233 (5)
C5	0.6784 (2)	0.7166 (5)	0.62454 (17)	0.0237 (5)
H5A	0.7577	0.6711	0.6372	0.028*
C6	0.63612 (19)	0.9123 (5)	0.55719 (16)	0.0234 (5)
C7	0.5151 (2)	0.9788 (5)	0.53588 (16)	0.0227 (5)
C8	0.4682 (2)	1.1790 (6)	0.46665 (17)	0.0258 (5)
H8A	0.5159	1.2761	0.4326	0.031*
С9	0.3527 (2)	1.2309 (6)	0.44944 (19)	0.0299 (5)
H9A	0.3191	1.3639	0.4030	0.036*
C10	0.2852 (2)	1.0854 (6)	0.50113 (19)	0.0297 (5)
H10A	0.2052	1.1223	0.4879	0.036*
C11	0.4404 (2)	0.8465 (5)	0.58528 (16)	0.0233 (5)
C12	0.48604 (19)	0.6424 (5)	0.65842 (16)	0.0221 (5)
C13	0.8014 (2)	1.1466 (6)	0.54239 (17)	0.0252 (5)
H13A	0.8229	1.1375	0.6079	0.030*
C14	0.8805 (2)	1.2756 (5)	0.49080 (18)	0.0258 (5)
C15	0.9738 (2)	1.4372 (5)	0.53890 (18)	0.0268 (5)
C16	1.0503 (2)	1.5581 (6)	0.4904 (2)	0.0311 (5)
H16A	1.1138	1.6655	0.5226	0.037*
C17	1.0351 (2)	1.5235 (6)	0.3963 (2)	0.0358 (6)
H17A	1.0878	1.6080	0.3641	0.043*
C18	0.9425 (2)	1.3650 (8)	0.3476 (2)	0.0382 (6)
H18A	0.9323	1.3405	0.2826	0.046*
C19	0.8661 (2)	1.2446 (6)	0.39525 (18)	0.0305 (5)
H19A	0.8027	1.1387	0.3623	0.037*
C1S	1.1695 (2)	1.9603 (6)	0.7274 (2)	0.0368 (6)
H1S1	1.2045	2.0217	0.7903	0.055*
H1S2	1.0873	2.0020	0.7150	0.055*
H1S3	1.2051	2.0636	0.6829	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0270 (8)	0.0449 (11)	0.0295 (9)	-0.0100 (8)	0.0067 (7)	-0.0060 (8)	
O1S	0.0226 (8)	0.0333 (9)	0.0364 (10)	-0.0025 (7)	0.0064 (7)	-0.0027 (8)	
N1	0.0220 (9)	0.0255 (10)	0.0282 (10)	-0.0003 (8)	0.0040 (8)	-0.0010 (9)	
N2	0.0228 (9)	0.0262 (10)	0.0310 (11)	0.0006 (8)	0.0047 (8)	0.0015 (8)	
N3	0.0223 (10)	0.0280 (10)	0.0269 (10)	-0.0002 (8)	0.0061 (8)	-0.0011 (8)	
C1	0.0298 (12)	0.0264 (12)	0.0271 (12)	-0.0032 (10)	0.0081 (10)	0.0005 (10)	
C2	0.0306 (12)	0.0284 (12)	0.0262 (12)	-0.0009 (10)	0.0011 (9)	0.0011 (9)	
C3	0.0243 (11)	0.0253 (11)	0.0277 (12)	0.0021 (9)	0.0002 (9)	-0.0014 (10)	
C4	0.0227 (12)	0.0209 (10)	0.0255 (12)	-0.0011 (9)	0.0029 (9)	-0.0024 (9)	
C5	0.0203 (10)	0.0243 (11)	0.0260 (11)	0.0004 (9)	0.0035 (8)	-0.0032 (9)	
C6	0.0236 (11)	0.0220 (10)	0.0244 (11)	-0.0013 (9)	0.0044 (9)	-0.0041 (9)	

C7	0.0227 (10)	0.0212 (10)	0.0233 (11)	-0.0013 (8)	0.0025 (9)	-0.0029 (9)
C8	0.0286 (12)	0.0246 (11)	0.0242 (11)	-0.0008 (9)	0.0053 (9)	-0.0010 (9)
C9	0.0309 (13)	0.0298 (11)	0.0272 (11)	0.0032 (10)	0.0022 (10)	0.0041 (10)
C10	0.0225 (12)	0.0290 (12)	0.0363 (13)	0.0035 (9)	0.0032 (10)	0.0019 (11)
C11	0.0221 (11)	0.0217 (10)	0.0250 (11)	-0.0013 (8)	0.0024 (9)	-0.0033 (9)
C12	0.0206 (10)	0.0206 (11)	0.0246 (11)	-0.0011 (8)	0.0034 (9)	-0.0023 (9)
C13	0.0241 (11)	0.0259 (11)	0.0257 (11)	0.0017 (9)	0.0057 (8)	0.0000 (9)
C14	0.0214 (10)	0.0268 (11)	0.0294 (12)	0.0020 (9)	0.0056 (9)	0.0022 (10)
C15	0.0222 (10)	0.0275 (11)	0.0308 (12)	0.0021 (9)	0.0056 (9)	0.0002 (10)
C16	0.0215 (11)	0.0326 (13)	0.0397 (14)	-0.0031 (10)	0.0072 (10)	0.0021 (11)
C17	0.0248 (11)	0.0432 (14)	0.0417 (15)	0.0030 (11)	0.0123 (10)	0.0150 (12)
C18	0.0313 (13)	0.0560 (18)	0.0273 (12)	0.0040 (12)	0.0061 (10)	0.0063 (12)
C19	0.0228 (11)	0.0403 (14)	0.0279 (12)	-0.0011 (10)	0.0039 (9)	0.0007 (11)
C1S	0.0318 (13)	0.0350 (14)	0.0451 (16)	-0.0016 (11)	0.0115 (11)	-0.0054 (12)

Geometric parameters (Å, °)

01—C15	1.353 (3)	С7—С8	1.413 (3)
01—H1	0.8400	C8—C9	1.371 (4)
O1S—C1S	1.421 (3)	C8—H8A	0.9500
O1S—H1S	0.8400	C9—C10	1.396 (4)
N1-C1	1.327 (3)	С9—Н9А	0.9500
N1-C12	1.356 (3)	C10—H10A	0.9500
N2-C10	1.333 (3)	C11—C12	1.459 (3)
N2-C11	1.359 (3)	C13—C14	1.462 (3)
N3—C13	1.277 (3)	C13—H13A	0.9500
N3—C6	1.406 (3)	C14—C19	1.395 (4)
C1—C2	1.406 (4)	C14—C15	1.410 (3)
C1—H1A	0.9500	C15—C16	1.393 (3)
C2—C3	1.365 (4)	C16—C17	1.374 (4)
C2—H2A	0.9500	C16—H16A	0.9500
C3—C4	1.414 (4)	C17—C18	1.399 (4)
С3—НЗА	0.9500	C17—H17A	0.9500
C4—C12	1.412 (3)	C18—C19	1.382 (4)
C4—C5	1.434 (3)	C18—H18A	0.9500
C5—C6	1.368 (3)	C19—H19A	0.9500
С5—Н5А	0.9500	C1S—H1S1	0.9800
C6—C7	1.447 (3)	C1S—H1S2	0.9800
C7—C11	1.407 (3)	C1S—H1S3	0.9800
C15—O1—H1	109.5	C9—C10—H10A	118.0
C1S-O1S-H1S	109.5	N2—C11—C7	123.0 (2)
C1—N1—C12	117.7 (2)	N2—C11—C12	117.5 (2)
C10-N2-C11	117.1 (2)	C7—C11—C12	119.5 (2)
C13—N3—C6	118.4 (2)	N1—C12—C4	122.6 (2)
N1-C1-C2	124.0 (2)	N1-C12-C11	118.80 (19)
N1—C1—H1A	118.0	C4—C12—C11	118.6 (2)
C2—C1—H1A	118.0	N3—C13—C14	122.3 (2)
C3—C2—C1	118.5 (2)	N3—C13—H13A	118.9
С3—С2—Н2А	120.8	C14—C13—H13A	118.9

C1—C2—H2A	120.8	C19—C14—C15	119.0 (2)
C2—C3—C4	119.6 (2)	C19—C14—C13	121.9 (2)
С2—С3—НЗА	120.2	C15—C14—C13	119.1 (2)
С4—С3—НЗА	120.2	O1—C15—C16	122.5 (2)
C12—C4—C3	117.6 (2)	O1—C15—C14	118.0 (2)
C12—C4—C5	120.8 (2)	C16—C15—C14	119.4 (2)
C3—C4—C5	121.6 (2)	C17—C16—C15	120.7 (2)
C6—C5—C4	120.6 (2)	C17—C16—H16A	119.7
С6—С5—Н5А	119.7	C15—C16—H16A	119.7
C4—C5—H5A	119.7	C16—C17—C18	120.5 (3)
C5—C6—N3	122.9 (2)	С16—С17—Н17А	119.7
C5—C6—C7	120.2 (2)	C18—C17—H17A	119.7
N3—C6—C7	116.8 (2)	C19—C18—C17	119.2 (3)
C11—C7—C8	117.9 (2)	C19—C18—H18A	120.4
С11—С7—С6	120.3 (2)	C17—C18—H18A	120.4
C8—C7—C6	121.8 (2)	C18—C19—C14	121.2 (2)
C9—C8—C7	118.9 (2)	С18—С19—Н19А	119.4
С9—С8—Н8А	120.5	C14—C19—H19A	119.4
С7—С8—Н8А	120.5	O1S-C1S-H1S1	109.5
C8—C9—C10	119.0 (2)	O1S—C1S—H1S2	109.5
С8—С9—Н9А	120.5	H1S1—C1S—H1S2	109.5
С10—С9—Н9А	120.5	O1S—C1S—H1S3	109.5
N2—C10—C9	124.1 (2)	H1S1—C1S—H1S3	109.5
N2—C10—H10A	118.0	H1S2—C1S—H1S3	109.5
C12—N1—C1—C2	0.7 (4)	C6—C7—C11—C12	0.2 (3)
C12—N1—C1—C2 N1—C1—C2—C3	0.7 (4) -0.4 (4)	C6—C7—C11—C12 C1—N1—C12—C4	0.2 (3) -1.2 (3)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4	0.7 (4) -0.4 (4) 0.4 (4)	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11	0.2 (3) -1.2 (3) 179.1 (2)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3)	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11 C3—C4—C12—N1	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3) 179.2 (2)	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11 C3—C4—C12—N1 C5—C4—C12—N1	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C12—C4—C5—C6	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3) 179.2 (2) 0.3 (3)	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11 C3—C4—C12—N1 C5—C4—C12—N1 C3—C4—C12—N1	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C12—C4—C5—C6 C3—C4—C5—C6	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3) 179.2 (2) 0.3 (3) -179.6 (2)	C6-C7-C11-C12 C1-N1-C12-C4 C1-N1-C12-C11 C3-C4-C12-N1 C5-C4-C12-N1 C3-C4-C12-N1 C3-C4-C12-C11 C5-C4-C12-C11	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C12—C4—C5—C6 C3—C4—C5—C6 C4—C5—C6—N3	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3) 179.2 (2) 0.3 (3) -179.6 (2) -177.8 (2)	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11 C3—C4—C12—N1 C5—C4—C12—N1 C3—C4—C12—C11 C5—C4—C12—C11 N2—C11—C12—N1	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C12—C4—C5—C6 C3—C4—C5—C6 C4—C5—C6—N3 C4—C5—C6—C7	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \end{array}$	C6—C7—C11—C12 C1—N1—C12—C4 C1—N1—C12—C11 C3—C4—C12—N1 C5—C4—C12—N1 C3—C4—C12—C11 C5—C4—C12—C11 N2—C11—C12—N1 C7—C11—C12—N1	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3) 178.5 (2)
C12—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C12—C4—C5—C6 C3—C4—C5—C6 C4—C5—C6—N3 C4—C5—C6—C7 C13—N3—C6—C5	0.7 (4) -0.4 (4) 0.4 (4) -0.8 (3) 179.2 (2) 0.3 (3) -179.6 (2) -177.8 (2) -1.3 (3) -46.2 (3)	C6-C7-C11-C12 C1-N1-C12-C4 C1-N1-C12-C11 C3-C4-C12-N1 C5-C4-C12-N1 C3-C4-C12-C11 C5-C4-C12-C11 N2-C11-C12-N1 N2-C11-C12-N1 N2-C11-C12-C4	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3) 178.5 (2) 178.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3) 178.5 (2) 178.3 (2) -1.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3) 178.5 (2) 178.3 (2) -1.2 (3) 176.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 (3) -1.2 (3) 179.1 (2) 1.2 (3) -178.7 (2) -179.1 (2) 1.0 (3) -2.0 (3) 178.5 (2) 178.3 (2) -1.2 (3) 176.8 (2) -13.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \end{array}$	$\begin{array}{c} C6-C7-C11-C12\\ C1-N1-C12-C4\\ C1-N1-C12-C11\\ C3-C4-C12-N1\\ C5-C4-C12-N1\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ N2-C11-C12-N1\\ N2-C11-C12-N1\\ N2-C11-C12-N1\\ N2-C11-C12-C4\\ C7-C11-C12-C4\\ C6-N3-C13-C14\\ N3-C13-C14-C19\\ N3-C13-C14-C15\\ \end{array}$	$\begin{array}{c} 0.2 (3) \\ -1.2 (3) \\ 179.1 (2) \\ 1.2 (3) \\ -178.7 (2) \\ -179.1 (2) \\ 1.0 (3) \\ -2.0 (3) \\ 178.5 (2) \\ 178.3 (2) \\ -1.2 (3) \\ 176.8 (2) \\ -13.4 (4) \\ 166.3 (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 (3) \\ -1.2 (3) \\ 179.1 (2) \\ 1.2 (3) \\ -178.7 (2) \\ -179.1 (2) \\ 1.0 (3) \\ -2.0 (3) \\ 178.5 (2) \\ 178.3 (2) \\ -1.2 (3) \\ 176.8 (2) \\ -13.4 (4) \\ 166.3 (2) \\ 178.7 (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 (3) \\ -1.2 (3) \\ 179.1 (2) \\ 1.2 (3) \\ -178.7 (2) \\ -179.1 (2) \\ 1.0 (3) \\ -2.0 (3) \\ 178.5 (2) \\ 178.3 (2) \\ -1.2 (3) \\ 176.8 (2) \\ -13.4 (4) \\ 166.3 (2) \\ 178.7 (2) \\ -1.0 (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \\ 179.6 (2) \end{array}$	$\begin{array}{c} C6-C7-C11-C12\\ C1-N1-C12-C4\\ C1-N1-C12-C11\\ C3-C4-C12-N1\\ C5-C4-C12-N1\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ N2-C11-C12-N1\\ N2-C11-C12-N1\\ N2-C11-C12-C4\\ C7-C11-C12-C4\\ C6-N3-C13-C14\\ N3-C13-C14-C19\\ N3-C13-C14-C15\\ C19-C14-C15-O1\\ C13-C14-C15-O1\\ C19-C14-C15-C16\\ \end{array}$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -178.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ -1.0 \ (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \\ 179.6 (2) \\ 0.3 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -179.1 \ (2) \\ 1.78.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ -1.0 \ (3) \\ 179.3 \ (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \\ 179.6 (2) \\ 0.3 (4) \\ -0.4 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -178.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ 179.3 \ (2) \\ -179.1 \ (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ 179.6 (2) \\ 0.3 (4) \\ -0.4 (4) \\ 0.6 (4) \end{array}$	$\begin{array}{c} C6-C7-C11-C12\\ C1-N1-C12-C4\\ C1-N1-C12-C11\\ C3-C4-C12-N1\\ C5-C4-C12-N1\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ N2-C11-C12-N1\\ N2-C11-C12-N1\\ N2-C11-C12-C4\\ C7-C11-C12-C4\\ C7-C11-C12-C4\\ C6-N3-C13-C14\\ N3-C13-C14-C19\\ N3-C13-C14-C15\\ C19-C14-C15-O1\\ C13-C14-C15-O1\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C17-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ \end{array}$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -178.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ -1.0 \ (3) \\ 179.3 \ (2) \\ -179.1 \ (2) \\ 0.7 \ (4) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ 179.6 (2) \\ 0.3 (4) \\ -0.4 (4) \\ 0.6 (4) \\ -0.7 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -178.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ -1.0 \ (3) \\ 179.3 \ (2) \\ -179.1 \ (2) \\ 0.7 \ (4) \\ -0.3 \ (4) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \\ 179.6 (2) \\ 0.3 (4) \\ -0.4 (4) \\ 0.6 (4) \\ -0.7 (3) \\ 179.8 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -179.1 \ (2) \\ 1.7 \ (3) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ 179.3 \ (2) \\ -179.1 \ (2) \\ 0.7 \ (4) \\ -0.3 \ (4) \\ 0.3 \ (4) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.7 (4) \\ -0.4 (4) \\ 0.4 (4) \\ -0.8 (3) \\ 179.2 (2) \\ 0.3 (3) \\ -179.6 (2) \\ -177.8 (2) \\ -1.3 (3) \\ -46.2 (3) \\ 137.3 (2) \\ 1.1 (3) \\ 177.8 (2) \\ -179.8 (2) \\ -3.1 (3) \\ -1.3 (3) \\ 179.6 (2) \\ 0.3 (4) \\ -0.4 (4) \\ 0.6 (4) \\ -0.7 (3) \\ 179.8 (2) \\ 1.6 (3) \end{array}$	$\begin{array}{c} C6-C7-C11-C12\\ C1-N1-C12-C4\\ C1-N1-C12-C11\\ C3-C4-C12-N1\\ C5-C4-C12-N1\\ C5-C4-C12-C11\\ C5-C4-C12-C11\\ N2-C11-C12-N1\\ C7-C11-C12-N1\\ N2-C11-C12-C4\\ C7-C11-C12-C4\\ C6-N3-C13-C14\\ N3-C13-C14-C15\\ C19-C14-C15-O1\\ C13-C14-C15-O1\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C13-C14-C15-C16\\ C17-C18-C19\\ C19-C14-C19\\ C17-C18-C19-C14\\ \end{array}$	$\begin{array}{c} 0.2 \ (3) \\ -1.2 \ (3) \\ 179.1 \ (2) \\ 1.2 \ (3) \\ -178.7 \ (2) \\ -179.1 \ (2) \\ 1.0 \ (3) \\ -2.0 \ (3) \\ 178.5 \ (2) \\ 178.3 \ (2) \\ -1.2 \ (3) \\ 176.8 \ (2) \\ -13.4 \ (4) \\ 166.3 \ (2) \\ 178.7 \ (2) \\ -1.0 \ (3) \\ 179.3 \ (2) \\ -179.1 \ (2) \\ 0.7 \ (4) \\ -0.3 \ (4) \\ -0.7 \ (4) \end{array}$

supplementary materials

C8—C7—C11—C12	-178.9 (2)	C13—C14—C19—C18		-179.2 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A	
01—H1…O1S	0.84	1.81	2.640 (3)	172	
O1S—H1S····N1 ⁱ	0.84	2.01	2.829 (3)	163	
O1S—H1S···N2 ⁱ	0.84	2.68	3.242 (3)	126	

Symmetry code: (i) x+1, y+1, z.